Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics.

نویسندگان

  • Tokihiro Yamamoto
  • Sven Kabus
  • Tobias Klinder
  • Jens von Berg
  • Cristian Lorenz
  • Billy W Loo
  • Paul J Keall
چکیده

PURPOSE A novel pulmonary ventilation imaging technique based on four-dimensional (4D) CT has advantages over existing techniques and could be used for functional avoidance in radiotherapy. There are various deformable image registration (DIR) algorithms and two classes of ventilation metric that can be used for 4D-CT ventilation imaging, each yielding different images. The purpose of this study was to quantify the variability of the 4D-CT ventilation to DIR algorithms and metrics. METHODS 4D-CT ventilation images were created for 12 patients using different combinations of two DIR algorithms, volumetric (DIR(vol)) and surface-based (DIR(sur)), yielding two displacement vector fields (DVFs) per patient (DVF(voI) and DVF(sur)), and two metrics, Hounsfield unit (HU) change (V(HU)) and Jacobian determinant of deformation (V(Jac)), yielding four ventilation image sets (V(HU)(vol), V(HU)(sur), V(Jac)(voI), and V(Jac)(sur). First DVF(vol) and DVF(sur) were compared visually and quantitatively to the length of 3D displacement vector difference. Second, four ventilation images were compared based on voxel-based Spearman's rank correlation coefficients and coefficients of variation as a measure of spatial heterogeneity. V(HU)(vol) was chosen as the reference for the comparison. RESULTS The mean length of 3D vector difference between DVF(vol) and DVF(sur) was 2.0 +/- 1.1 mm on average, which was smaller than the voxel dimension of the image set and the variations. Visually, the reference V(HU)(vol) demonstrated similar regional distributions with V(HU)(sur); the reference, however, was markedly different from V(Jac)(vol) and V((Jac)(sur). The correlation coefficients of V(HU)(vol) with V(HU)(sur), V(Jac)(vol) and V(Jac)(sur) were 0.77 +/- 0.06, 0.25 +/- 0.06 and 0.15 +/- 0.07, respectively, indicating that the metric introduced larger variations in the ventilation images than the DIR algorithm. The spatial heterogeneities for V(HU)(vol), 'V(HU)(sur), V(Jac)(vol), and V(Jac)(sur) were 1.8 +/- 1.6, 1.8 +/- 1.5 (p = 0. 85), 0.6 +/- 0.2 (p = 0.02), and 0.7 +/- 0.2 (p = 0.03), respectively, also demonstrating that the metric introduced larger variations. CONCLUSIONS 4D-CT pulmonary ventilation images vary widely with DIR algorithms and metrics. Careful physiologic validation to determine the appropriate DIR algorithm and metric is needed prior to its applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images

Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...

متن کامل

Compressible image registration for thoracic computed tomography images

We developed a method for the calculation of dynamic ventilation images from four dimensional computed tomography (4D CT) images. A voxel mapping produced by applying deformable image registration to the components of the 4D CT image data set is central to the calculation. Current algorithms, such as optical flow, assume incompressibility in their formulation which is inaccurate for lung tissue...

متن کامل

Regional pulmonary function analysis using image registration and 4DCT

Current radiation therapy (RT) planning for limiting lung toxicity assumes a uniform distribution of lung function with little consideration to the spatial and temporal pattern of lung function. Establishment of relationships between radiation dose and pulmonary function change can help predict and reduce the RT-induced pulmonary toxicity. Baseline measurement uncertainty of pulmonary function ...

متن کامل

Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy.

PURPOSE To quantify the dosimetric impact of four-dimensional computed tomography (4D-CT) pulmonary ventilation imaging-based functional treatment planning that avoids high-functional lung regions. METHODS AND MATERIALS 4D-CT ventilation images were created from 15 non-small-cell lung cancer patients using deformable image registration and quantitative analysis of the resultant displacement v...

متن کامل

Evaluation of the ΔV 4D CT ventilation calculation method using in vivo xenon CT ventilation data and comparison to other methods

Ventilation distribution calculation using 4D CT has shown promising potential in several clinical applications. This study evaluated the direct geometric ventilation calculation method, namely the ΔV method, with xenon-enhanced CT (XeCT) ventilation data from four sheep, and compared it with two other published meth-ods, the Jacobian and the Hounsfield unit (HU) methods. Spearman correlation c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2011